USGS - science for a changing world

Pacific Coastal and Marine Science Center

USGS Coral Reef Project

Photo of coral reef.  

Sea-Level Rise and Climate Change Impacts to Reefs

The Problem

Graphs showing various sea level effects.

Plots of numerical model results showing how predicted future sea-level rise will likely reduce sediment residence time (how long it stays in place, top) and increase sediment flux (how much sediment moves how quickly, bottom) on the fringing coral reef flat off south-central Molokaʻi.

There is a growing body of evidence indicating that the rate of sea-level rise has increased relative to the past century and will continue to increase in the 21st century; that evidence has recently been summarized by the Intergovernmental Panel on Climate Change (IPCC). If all aspects of reef morphology—colony size and shape, cross-reef relief, surface rugosity, and so on—keep pace with the rising sea levels, then it is likely that changes in depth-controlled physical processes will be minimal to non-detectible. However, based on rates of vertical reef accretion in Hawaiʻi and throughout the Pacific (which are an order of magnitude smaller than predicted rates of sea-level rise), it is unlikely that reefs there and other locations will keep pace, and their inability to do so will lead to subtle but important changes in selected physical processes on some coral reefs.

Photograph taken at the interface between air and sea.

Photograph of the shallow fringing coral reef flat and adjacent land at Kaulana, Kahoʻolawe.

In addition, recent studies indicate the flux of submarine groundwater discharge from land to coral reefs in Hawaiʻi and other high islands is substantial, and often significantly colder and enriched in terrestrial-derived nutrients than surrounding seawater. Ecosystem functions of submarine groundwater discharge to coral reef ecosystems are not quantified but can be hypothesized to (1) buffer thermal stress (bleaching) in corals experiencing warming, and (2) supply nutrients to otherwise oligotrophic coastal waters. While an excess of the latter has been observed to cause complete phase shifts in the form of wholesale loss of coral and replacement by macroalgae, the role of the former has not been tested. Both may be significantly altered by impending climate change and proposed land use that alter groundwater quantity, quality, flux, composition, and fate, especially in rapidly developing areas. This effort is focused on submarine groundwater discharge, its role in shaping coral reef ecosystem structure, and the ecosystem services it provides.

The Approach

The overall objective of this research effort is to better understand how climate change may impact coral reefs. Achievement of this objective requires an understanding of the physical parameters driving change in coral reefs and the resulting ecosystem processes. The goals of this effort are to:

  1. How will reefs respond to rapid sea-level rise at a decadal time-scale?
  2. How will increased wave energy and altered circulation across reefs affect circulation and sediment, nutrient, contaminant, and larval dynamics?
  3. Do thresholds exist in the rate of sea-level rise that would push a reef ecosystem from a state of stability to one of net loss?
  4. How may changes in precipitation, recharge, and human-induced withdraws impact submarine groundwater discharge to the coastal zone?
  5. How will coral reefs respond to variations in submarine groundwater discharge predicted to occur due to climate change?

The approach to these interdisciplinary studies will rely on a combination of field measurements and physics-based numerical monitoring. We use a wide range of tools to try to answer these questions, including: oceanographic instruments (for example, acoustic Doppler current profilers, wave/tide gauges, temperature sensors, salinity sensors, chemical sensors) mounted on the seabed or on moorings, water-column profilers with similar suites of sensors, coral cores, geophysical water-column and sub-bottom surveys, and physics-based numerical models.


Journal Articles

Cartoons showing ocean wave scenarios and what would happen to groundwater given rising sea level conditions.

Conceptual diagram showing impact of sea-level rise and wave-driven flooding on atoll-island groundwater. (A) Current sea level. (B) Future sea level. Sea-level rise will allow for greater wave heights (H) and wave-driven runup (R), resulting in frequent overwash that will contaminate the atoll island’s freshwater lens. Note: Heights are exaggerated. [Larger version]

Prouty, N.G, Yates, K.K., Smiley, N., Gallagher, C., and Storlazzi, C.D., 2018, Carbonate system parameters of an algal-dominated reef along west Maui: Biogeosciences, doi: 10.5194/bg-2018-35.

Storlazzi, C.D., 2018, Challenges of forecasting flooding on coral reef–lined coasts: Eos, v. 99, doi: 10.1029/2018EO098517.

Storlazzi, C.D., Gingerich, S.B., van Dongeren, A., Cheriton, O.M., Swarzenski, P.W., Quataert, E., Voss, C.I., Field, D.W., Annamalai, H., Piniak, G.A., and McCall, R., 2018, Most atolls will be uninhabitable by the mid-21st century because of sea-level rise exacerbating wave-driven flooding: Science Advances, v. 4 no. 4, doi: 10.1126/sciadv.aap9741.

Johannesson, K.H., Palmore, C.D., Fackrell, J., Prouty, N.G., Swarzenski, P.W., Chevis, D.A., Telfeyan, K., White, C.D., and Burdige, D.J., 2017, Rare earth element behavior during groundwater–seawater mixing along the Kona Coast of Hawaii: Geochimica et Cosmochimica Acta, v. 198, pp. 229–258, doi: 10.1016/j.gca.2016.11.009.

Pearson, S.G., Storlazzi, C.D., van Dongeren, A.R., Tissier, M.F.S., and Reniers, A.J.H.M., 2017, A Bayesian-Based System to Assess Wave-Driven Flooding Hazards on Coral Reef-Lined Coasts: Journal of Geophysical Research: Oceans, v. Accepted Article, doi: 10.1002/2017jc013204.

Shope, J.B., Storlazzi, C.D., and Hoeke, R.K., 2017, Projected atoll shoreline and run-up changes in response to sea-level rise and varying large wave conditions at Wake and Midway Atolls, Northwestern Hawaiian Islands: Geomorphology, v. 295 no. Supplement C, pp. 537–550, doi: 10.1016/j.geomorph.2017.08.002.

Chang, C.-C., Burr, G.S., Jull, A.J.T., Russell, J.L., Biddulph, D., White, L., Prouty, N.G., Chen, Y.-G., Shen, C.-C., Zhou, W., and Lam, D.D., 2016, Reconstructing surface ocean circulation with 129I time series records from corals: Journal of Environmental Radioactivity, v. 165, p. 144–150, doi: 10.1016/j.jenvrad.2016.09.016.

Cheriton, O.M., Storlazzi, C.D., and Rosenberger, K.J., 2016, Observations of wave transformation over a fringing coral reef and the importance of low-frequency waves and offshore water levels to runup, overwash, and coastal flooding: Journal of Geophysical Research—Oceans, v. 121, p. 3,121–3,140, doi: 10.1002/2015JC011231.

Gawehn, M., van Dongeran, A., van Rooijen, A., Storlazzi, C., Cheriton, O., and Reniers, A., 2016, Identification and classification of very low frequency waves on a coral reef flat: Journal of Geophysical Research C: Oceans, v. 121, p. 7,560–7,574, doi:10.1002/2016jc011834.

Jokiel, P.L., Jury, C.P., and Kuffner, I.B., 2016, Coral calcification and ocean acidification, in, Hubbard, D.K., Rogers, C.S., Lipps, J.H., and Stanley, J., G.D., Eds., Coral Reefs at the Crossroads Vol. 6, New York, NY, Springer, p. 7–45, doi: 10.1007/978-94-017-7567-0_2.

Shope, J.B., Storlazzi, C.D., Erikson, L.H., and Hegermiller, C.A., 2016, Changes to extreme wave climates of islands within the Western Tropical Pacific throughout the 21st century under RCP 4.5 and RCP 8.5, with implications for island vulnerability and sustainability: Global and Planetary Change, v. 141, p. 2538, doi: 10.1016/j.gloplacha.2016.03.009.

Bahr, K.D., Jokiel, P.L., and Rodgers, K.S., 2015, The 2014 coral bleaching and freshwater flood events in Kāneʻohe Bay, Hawaiʻi: PeerJ, v. 3, no. e1136, doi:10.7717/peerj.1136.

Johnson, C.D., Swarzenski, P.W., Richardson, C.M., Smith, C.G., Kroeger, K.D., and Ganguli, P.M., 2015, Ground-truthing electrical resistivity methods in support of submarine groundwater discharge studies; Examples from Hawaii, Washington, and California: Journal of Environmental and Engineering Geophysics, v. 20, p. 81­–87, doi:10.2113/JEEG20.1.81.

Suspended-sediment concentration schematic; read caption for more information.

Maps of suspended-sediment concentrations under low tide conditions and high tide conditions off south-central Molokaʻi. Such comparisons over a range of water levels are useful to provide insight on how processes on reefs may respond to predicted future sea-level rise. [larger version]

Quataert, E., Storlazzi, D., van Rooijen, A., Cheriton, O., van Dongeren, A., 2015, The influence of coral reefs and climate change on wave-driven flooding of tropical coastlines: Geophysical Research Letters, doi: 10.1002/015GL064861.

Ferrario, F., Beck, M.W., Storlazzi, C.D., Micheli, F., Shepard, C.C., and Airoldi, L., 2014, The effectiveness of coral reefs for coastal hazard risk reduction and adaptation: Nature Communications, 5:3794, doi:10.1038/ncomms4794 [download PDF]

Grady, A.E., Moore, L.J., Storlazzi, C.D., Elias, E., and Reidenbach, M.A., 2013, The influence of sea level rise and changes in fringing reef morphology on gradients in alongshore sediment transport: Geophysical Research Letters, v. 40, i. 12, p. 30963101, doi:10.1002/grl.50577.

Storlazzi, C.D., Field, M.E., Cheriton, O.M., Presto, M.K., and Logan, J.B., 2013, Rapid fluctuations in flow and water-column properties in Asan Bay, Guam: implications for selective resilience of coral reefs in warming seas: Coral Reefs, v. 32, p. 949-961, doi:10.1007/s00338-013-1061-x.

Swarzenski, P.W., Dulaiova, H., Dailer, M.L., Glenn, C.R., Smith, C.G., and Storlazzi, C.D., 2013, A geochemical and geophysical assessment of coastal groundwater discharge at select sites in Maui and Oʻahu, Hawaiʻi, in Wetzelhuetter, C., ed., Groundwater in the coastal zones of Asia Pacific: Coastal Research Library, Vol. 7: New York, Springer, p. 27-46, doi:10.1007/978-94-007-5648-9.

Field, M.E, Ogston, A.S., and Storlazzi, C.D., 2011, Rising sea level may cause decline of fringing coral reefs: Eos Transactions AGU, v. 92, no. 33, p. 273-280, doi:10.1029/2011EO330001.

Prouty, N.G., Roark, E.B., Buster, N., and Ross, S., 2011, Growth rate and age distribution of deep-sea black corals in the Gulf of Mexico: Marine Ecology Progress Series, v. 423, p. 101-115, doi:10.3354/meps08953.

Storlazzi, C.D., Elias, E., Field, M.E, and Presto, M.K., 2011, Numerical modeling of the impact of sea-level rise on fringing coral reef hydrodynamics and sediment transport: Coral Reefs, v. 30, Supplement 1, p. 83-96, doi:10.1007/s00338-011-0723-9.

Knee, K.L., Street, J.H., Grossman, E.E., Boehm, A.B., and Paytan, A., 2010, Nutrient inputs to the coastal ocean from submarine groundwater discharge in a groundwater-dominated system; relation to land use (Kona coast, Hawaii, U.S.A.): Limnology and Oceanography, v. 55, no. 3, p. 1105-1122, doi:10.4319/lo.2010.55.3.1105.

Ogston, A.S., and Field, M.E., 2010, Predictions of turbidity due to enhanced sediment resuspension resulting from sea-level rise on a fringing coral reef; evidence from Molokai, Hawaii: Journal of Coastal Research, v. 26, i. 6, p. 1027-1037, doi:10.2112/JCOASTRES-D-09-00064.1.

Piniak, G.A., and Brown, E.K., 2009, Temporal variability in chlorophyll fluorescence of back-reef corals in Ofu, American Samoa: Biological Bulletin, v. 216, p. 55-67,

Prouty, N.G., Field, M.E., Jupiter, S.D., and McCulloch, M.T., 2009, Coral proxy record for decadal scale reduction in base flow from Moloka'i, Hawaii: Geochemistry, Geophysics, Geosystems, v. 10, Q12018, doi:10.1029/2009GC002714.

Engels, M.S., Fletcher, C.H., Field, M.E., Conger, C.L., and Bochicchio, C., 2008, Demise of reef-flat carbonate accumulation with late Holocene sea-level fall; evidence from Molokai Hawaii: Coral Reefs, v. 27, no. 4, p. 991–996, doi:10.1007/s00338-008-0410-7.

Street, J.H., Knee, K.L., Grossman, E.E., and Paytan, A., 2008, Submarine groundwater discharge and nutrient addition to the coastal zone and coral reefs of leeward Hawaiʻi: Marine Chemistry, v. 109, p. 355-376, doi:10.1016/j.marchem.2007.08.009.

Yates, K.K., and Halley, R.B., 2006, CO32− concentration and pCO2 thresholds for calcification and dissolution on the Molokai reef flat, Hawaii: Biogeosciences, v. 3, 357-369, doi:10.5194/bg-3-357-2006.

Jokiel, P.L., 2004, Temperature stress and coral bleaching, in Rosenberg, E., and Loya, Y., eds., Coral Health and Disease, Springer-Verlag, Heidelberg, p. 401-425.

Jokiel, P.L., and Brown, E.K., 2004, Global warming, regional trends and inshore environmental conditions influence coral bleaching in Hawaii: Global Change Biology, v. 10, no. 10, p. 1,627-1,641, doi:10.1111/j.1365-2486.2004.00836.x.

Scientific Conference Proceedings

Shope, J.B., Storlazzi, C.D., Erikson, L.H., Hegermiller, C.A., 2015, Modeled changes in extreme wave climates of the tropical Pacific over the 21st century: Implications for U.S. and U.S.-affiliated atoll islands: Coastal Sediments 2015, San Diego, CA, Proceedings, 11-15 May 2015, n. 0247, p. 1-13, doi: 10.1142/9789814689977_0247.

USGS Reports

Pearson, S.G., Storlazzi, C.D., van Dongeren, A.R., Tissier, M.F.S., and Reniers, A.J.H.M., 2017, BEWARE database: A Bayesian-based system to assess wave-driven flooding hazards on coral reef-lined coasts: U.S. Geological Survey data release, doi: 10.5066/F7T43S20.

Grossman, E.E., Logan, J.B., Presto, M.K., and Storlazzi, C.D., 2010, Submarine groundwater discharge and fate along the coast of Kaloko-Honokohau National Historical Park, Island of Hawaiʻi; Part III, spatial and temporal patterns in nearshore waters and coastal groundwater plumes, December 2003-April 2006: U.S. Geological Survey Scientific Investigations Report 2010-5081, 76 p.

U.S. Geological Survey, 2009, Science-based strategies for sustaining coral ecosystems: U.S. Geological Survey Fact Sheet 2009-3089, 4 p.

Field, M.E., Cochran, S.A., Logan, J.B., and Storlazzi, C.D., eds., 2008, The coral reef of south Molokaʻi, Hawaiʻi; Portrait of a sediment-threatened reef, U.S. Geological Survey Scientific Investigations Report, 2007-5101, 180 p.

Grossman, E.E., 2008, Sea-level and its affects on reefs in Hawaiʻi, in Field, M.E., Cochran, S.A., Logan, J.B., and Storlazzi, C.D., eds., The coral reef of south Molokaʻi, Hawaiʻi; Portrait of a sediment-threatened fringing reef, U.S. Geological Survey Scientific Investigations Report, 2007-5101, p. 101-104.

Grossman, E.E., Logan, J.B., Street, J., Paytan, A., and Chavez, P.S., 2008, Ground water and its influence on reef evolution, in Field, M.E., Cochran, S.A., Logan, J.B., and Storlazzi, C.D., eds., The coral reef of south Molokaʻi, Hawaiʻi; Portrait of a sediment-threatened fringing reef, U.S. Geological Survey Scientific Investigations Report, 2007-5101, p. 111-116.

Knee, K., Street, J., Grossman, E.E., and Paytan, A., 2008, Submarine ground water discharge and fate along the coast of Kaloko-Honokohau National Historical Park, Hawaiʻi; Part II, Spatial and temporal variations in salinity, radium-isotope activity, and nutrient concentrations in coastal waters, December 2003-April 2006: U.S. Geological Survey Scientific Investigations Report 2008-5128, 31 p.

Field, M.E., Berg, C.J., and Cochran, S.A., 2007, Science and management in the Hanalei watershed; a trans-disciplinary approach: U.S. Geological Survey Open-File Report 2007-1219, 87 p.

Presto, M.K., Storlazzi, C.D., Logan, J.B., and Grossman, E.E., 2007, Submarine groundwater discharge and fate along the coast of Kaloko-Honokōhau National Historical Park, Hawaiʻi; Part I, time-series measurements of currents, waves and water properties; November, 2005-July, 2006:U.S. Geological Survey Open-File Report 2007-1310, 39 p.

Invited Talks

Storlazzi, C.D., Shope, J.B., Erikson, L.H., Hegermiller, C.A., and Barnard, P.L., 2015, Future wave and wind projections for U.S. and U.S.-affiliated Pacific Islands: Webinar for Pacific Islands Climate Change Cooperative (PICCC), August 2015.


AccessibilityFOIAPrivacyPolicies and Notices

U.S. Department of the Interior|U.S. Geological Survey
Page Contact Information